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ON THE ASYMPTOTIC BEHAVIOR
OF K~MEANS

J. MacQueen
University of California, Los Angeles
1. Introduction. Let z

1? Zpsee. be a random sequence of points (vectors)
in EN’ each point being selected independently of the preceding ones using

a Tixed probability measure p. Thus P[zle Al = p(A) and P[zn+leA|zl,z2,---,z

p(A), n=1,2,..,., fOr A any measursble set in EN. Relative to a given k-tuple

x = (xl,xz,...,xk), x,€By, 1 = 1,2,,..k, we define a minim.m distance partitior

S(x) = [Sl(x), Sa(x),...,Sk(x)] of Ey, by Sl(x)

Sk(x) = Tk(x) Si(x)Sé(x)...Sl'{_l(x), vhere Ti(x)

Tl(x)} sa(x) = Ta(x)si(x))'°')
(£ & By

|§-xi|gl€-xdl, J=1,2,00e,k}. The set Si(x) contains the points in Ky nearest

to Xy5 with tied points being assigned arbitrarily to the set of lower Index.

Note that with this convention concerning tied points, if x,=x, and 1 < J
179

then Sj(x) = ¢. Sample k-means xn=(x§1-,xx21, o-.,x;;), xxil € EN’ 1= l, o.o,k’

with associated integer weights (w;, wg,... w;), are now defined as follows:

xi:l = zi,wi' =1, 1=1,2,.003k, and for n = 1,2,.., if Zyd eSi ’
nt+l nn n rtl n n+l n ntl n
= + + = = =
Xy (xiwi Z ll)/(wi 1), wi wi + 1, and x:j xj’ w|j w'j for J # i,

where S» = (Sg, Sg, ...,Sﬁ] is the minimum distance partition relative to xn.

We investigate the asymptotic behavior of the k-means, making the special
assumptions,(i), p is absolutely continuous with respect to Lebesgue measure
on Ey, end (11), p(R) = 1 for a closed and bounded convex set R € Ey» and
p(A) > O for every open set A &R, For a given k-~tuple x = (xl,xg,...xk) --
such an entity being referred to hereafter as a k-point -- let

w(x) = =5_) fsilz-xilzdp(Z) )

V(x) = Tf_, jsiiz-ui(x)l%pm 5

1 This work was supported by the West=rn Management Scierce Institute
urider a grant from the Ford Foundatiosn, and by the Office of laval
Research under Contract No. 233(75),; Task No. OLT-OL1.



e rer—

-2

wvhere S={Sl, 32’ o0 .Sk] is the minimum distance partition relative to x,

and u,(x) -f zdp(z)/p(8,) or wu,(x) = x, according as p(S,)> 0 or
i Si i i i i

p(Si) =0. If x, = ui(x), 1 =1,2,.005k, we say the k-point x 1is unbiased.

The principie result is

Theorem 1. The sequence of random variables w(xl), W(xe), ces CONVErges 8.8.
and W, = lm _ W(x") is £.5. equal to V(x) for some x in the cless of
k=-points x=(xl,x2,...xk) vhich are unbissed, and have the property that

xi;éxjifiaé:j.

In lieu of a satisfactory strong law of large numbers for k-means, we
obtain
n

ny.n n - . = e
Theoren 2. Z‘rl:=l (2]1{___1 pilxi - u.l.l )/ma.s. (o] as m < where ui = ui(x ) and

p; = p(8,(:=")).

Potertial applications of the k-means concept, vhich will be discussed
in detall elscwhere, occur in certain taxomony problems, in connection with
coding and pattern recognition problems, in the description of categorizing
behavior, and in connection with the problem of locating partitions with
minimum average variance [5] (See Box [1] and Ward [6] for related results.).
2. Proofs. The system of k-points forms a complete metric space if the

distance p(x,y) between the k-points x = (xl,xa,...xk) end y = (yl,ya,...yk),

is defined by p(x,y) = 2];=1d(xi,yi), where d(a,b) is the Euclidian distance
between a and b. We designate this space by M and interpret continuity,
limits, convergenrce, neighborhoods, etc., in the usual way with respect to
the metric topology of M. Of course, every bounded sequence of k-points

conteins a convergent subsequence,
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Certain difficulties encountered in the proof of Theorem 1 are caused
convergaent
by the possibility of the limit of a/sequence of k-points having some of
its constituent points equal to each other. With the end in view of
circumventing these difficulties, suppose that for a given k-point
X = (xl,xz,...,xk), x4€ Ry 1=1,2,...,k, we have x; = x, for a cortnin

pair 1,3,1i<3, and xi=xj¥ x, for n #£1, £ 3. 'The points x, ard x

i J
being distinct in this way, and considering assumption (ii) we necessarily
have p(Si(x)) > 0, for Si(x) certainly contains an open sub-set of R,
The convention concerning tied roints means p(SJ(x)) = 0, Now if (y7) =
{(Vg’ yg,...,yi)] is a sequence of k-rpoints satisfying y;l € R, and

yril # yg if 1£3, n=1,2,..., and the sequence yn approached x, then
y;l and yg approach x4= X 3’ and hence each other; they also approach
the boundaries of Si(yn) and SJ(yn) in the vicinity of x,. The
conditional means ui(yn) and uj(yn), hovever, must remasin in the
interior of ‘the sets Si(yn) and Sj(yn) respectively, and thus tend to
n

become separated from the corresponding points ygl and yJ Q

for each sufficiently large n, the distance of ui(yn) from the boundary of

In fact,

Si(yn) or the distance of uJ(yn) from the boundary of SJ(yn), will exceed

a certain positive number, For as n tends to infinity, p(Si(yn)) + p(SJ(yn))
will approach p(Si(x)) > 0 =-- a simple continuity argument based on the
absolute continuity of p will establish this -- and for each sufficiently
large n, at least one of the probabilities p(Si(yn)) or p(SJ(yn)) will
be positive by a definite amount, say 6. But in view of the boundedness of

R, a convex set of p measure at least & > 0 cannot have its conditional

mean arbitrarily near its boundary. This line of reasoning, which extends
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immediately to the case where some three »r more members of (xl,xe,...xk)

are equal, gives us

k-points (y"} = [(y:,yg,...ylr:)) satisfying y’i‘ € R, y‘;;é yg if 143, n=1,2,... .

- Zk n n _ n
If x, %y for some 1i#j then lim inf T, p(Si(y ))Iy1 ui(y )] > o.
Hence, if lim E]:::l p(Si(yn))Iyr; - ui(yn)l = 0, each member of the

k-tuple (xl,xa,...xk) is distinct from the others.,

We remark that if each member of the k-tuple x=(x,,x,, ...xk) is distinct
from the others, then m(y) = (p(.’al(y)), p(Se(y)),... p(Sk(y)), regarded
a5 a mapping of M onto Ek’ is ccntinuous at x-- this follows directly from
the absolute continuity of p. Similarly u(y) = (ul(y), ua(y),...u.k(y))
regarded as a mapping from M onto M is continuous at x -- because of the
gbsolute continuity of p and the boundness of R (finiteness of fzdp(z)
would do,) Putting this remark together with Lemma 1, we get
Lemms 2. Let x = (xl,xe,...xk) be the limit of a convergent sequence of
k-points (y"} = {(yr;_, yg,...y;:)] satisfying yr; € R, y’; # yf; i 1 ¢ 3.
n=1,2,... o If Lim 5 0(s,(y")|y] - u,(y") | =0 then

5

n
1 p(Si(x))Ix__L - u,(x )| = 0 and each point x; in the k-tuple (xl,xz,...xk)

is distinct_from the others,

Lemma 1 and 2 above are primarily technical in nature. The heart of
the proofs of theorem 1 and 2 is the following application of Martingale theory:

lerma 3. Let Ty toreees and §1, §2, 000 be given sequences of random

varigbles, and for each n=l,2,..., let tn be measuvrable with respect to

Bn where Bl‘: 52C is @ monotone increasing sequence of o- fields (belonging

to the underlying probability space). Suppose each of the following conditions

holds g.s.: (1) |t | <k<e, (11) § >0, T § <, (111) E(t ,,|ByByr.-.8))

< tn + §n' Then the sequences of random varisbles tl’t2"" and 801813855 00



where 8, =O and s = Z?:l(ti - E(ti+l|31,52,...31), n= 1,2,..., both
converge 8.8.

Proof. Let Y, = tn +en 1 so that the Y, form a Martingale sequence.

let ¢ be a positive number and consider the seguence (ir'n] obtained by
stopping ¥y (seel2], p. 300) at the first n for which ¥, < -c. From

. =1
(1i1) we see that y1r>_ -2?_=1 §1-K and since Yy “Yno1 > 2K, we have

§n>_ mex (-Z?;i §1 =K, -(c+2K)). The sequence {y} is a Martingale, so that
E§n= Ei‘l s n=1,2,..., and being bounded from below with E|§1|5 K, certainly
suanlfr'nl < ®, The Martingale Theorem [2, p. 319] shows in CONVErges a.s.

~ (-]
But y, = ¥ on the set A vhere-I . §i> -c-K, 1i=1,20e., and (1i)
implies P[Ac] -1 as c »», Thus {yn] converge s.s. This means
Sy = Y41 = tpeq 18 &8, bounded. Using (111) we can write -8,= 2’;:1%1-2’;:161
where Aiz 0. But since s, and Zg §i are 8.8, bounded, = A:l converges 8.8.,
8, converges &a.8., and finally, so does tn. This completes the proof.

Turning now to the proof of Throrem 1, let wn stand for the sequence

ntl

n n
ZysZpreeely 14y » o0 let A be the event [zn-i-ke S;1. Since S is

+
the minimum distance partition relative to P l, we have

(1) EMG™ e 1 = B2 jé:+1 lz - X" %ap(z) @ ]
e R AR R OIEN

R RS SRR R OILER

If 2z ,.€ Sg, x; = x for 1 # j. Thus ve obtain
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(2) EWGT ) 0 ] < W) - ByeaUgol - % %ar(2))7]

ntl, 2 n n
+ 3§=z. E[fsglz - Xy | dp(Z)IAJ, w ey -

Several applications of the relation fAlz-xlzdp(z) = IAlz-u|2dp(z) + p(A)lx-u|2 .

where IA(ll-Z) dp(z) = 0 , enables us to write the last term in (2) as
2 n 2 n n2, n m2
B lnl =1® antade} - (51- W)
n\2, u ny2, n,n 2 n;2 n n 2
+ ()7l w1 S ) + fsglz - ui}%an(z)pf/(wi+ 1)71.

Combining this with (2) , we get

(3) BW(x™ ) | @1 <w(x?) - 3581|x31 - u31|2(p!;)2(2w3:+ l)/(wg+ 1)2
* I o, BTG 0F

2 ny2 n
where on,,j= Isglz - uJI dl’)(z)/P'J .

Since we are assuming wv(R) = 1, certainly W(x") is a.s. bounded,

as is cr21 We now show that
3

J.
2 n 2

b z(PH)/(wh + 1

() n(P3) /(5 + 1)

converges a.s. for each Jj=1,2,...k, thereby showing that

Zn(%?_l[ci J(pg)z/(wg+ 1)2] converges a.s., Then Lemma 3 can be applied with
= 2

_ n _ 2 ny2,,’ 2
t =W(x") end §-= Z?‘;ﬂon,d(pj) /("? +1)%

It suffices to prove that

(5) Zpo(PPZ/UB + 1+ )8 + 1+ W)

converges s.5. for any positive number £ ; also, this is convenient, for

N 4s the characteristic function of the event

J
» and on nnting that wg'.'l: 1+ 8121 13 » a direct application

E(Iglwn) = pg vhere I

o
[Zn+ke 3 J ]



of Theorem 1, p. 274, in [3], says that for any positive numbers o and B,

P B+ 3’*1> 1+ 5 -ozz"l Y for all n- 1,2,...1> 1 - (#aB)™L,
where v;' = PJ - (PJ) is the conditionel variance of I} given wi' We take

@=1, end thus with probsbility at least 1 - (1+B)"l the series (5) is
dominated by
Epp FPZ/UL+ H73 DD (5] ()]

= 5,11/ 511 - 1/<1+z;‘=1(pj> )1,
which clearly converges.

The choice of B being arbitrary, we have shown that (4) converges a.s.
Application of lLemma 3 as indicated sbove proves W(xn) converges a.5.

To identify the limit W_, note that with t and En taken as above,
Lemma 3 entails a.s. convergence of Zn[w(xn) = E[W(xn-'-l)lwn]], and hence (3)
implies a.s. convergence of

6) sz (=, "l (¢ “\2 (25 +2)/(v + 1)),

gml ¥
Since (6) dominates )Z‘.n(ZIET:-.L;;L)I‘;Ix‘j - ug)/kn, the latter converges a.8.,
and a little consideration makes it clear that E};lpg ;:31 - unl =
}::Ijt___lp(sj(xn))|x31 - ud(xn)l convergee to zero on a sub-sequence {x'S5} and
that this sub-sequence has itself a convergent sub-sequence, say {xnt].

Let x = (xl,xe,...x ) = limt_mxnt. Since W(x) = V(x) + Z§=lp(sj(x))|x3-u(x)|2

end in particular W(x")

n n n ny) 2
%) + 21;=1p(SJ(x ))lxj- u(xJ)I » we have only to

= W(x), end (0), Lim_ B8 ) B(S,(x"))|xJt-u(x]®)| %

n
show (a), lim, ., W(x t)

0= 2§=1 p(SJ(x))IxJ - uj(x)la. Then W(x) = V(x) and x is a.s8. unbiased,

(Obviously =X

3 2
i=lpi|a'il = 0 1f and only if El;=lpi|ai| = 0, where p, > 0.)
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We show that (a) is true by establishing the continuity of W(x).
We have

W(x) S zgﬂl J‘Sd(y)lz-leadp(z)

< Ty Js (201 + B la(e )y - vy 1% 4
+ 2|x'j - ydl ISJ(y)lz = XJIdP(Z)]’
with the last inequality following easily from the triangle inequality. Thus
W(x) < W(y) + o(p(x,y)), end similerly W(y) < W(x) + o(p(x,¥)).
To esteblish (b), Lemma 2 cen be applied with (P} and (:7t) 1dentiried,
for a.s. xg # xf; for 1#J, n=1,2,... « It remains to remark that lemma 2
also implies a.S. xiaéx 3 for i j. The proof of Theorem 1 is complete.
Theorem 2 follows from the a.s. convergence of Zn(Z.J;____lp!;lx? - ugl)/nk
upon applying an elementary result, (c.f. Theorem C, p. 203 in [4]) which says
that if = a.n/n converges, E;_’___lai/n -0,
3. Remarks. In a number of cases covered by Theorem 1, all the unbiased
k=-points have the same value of W, In this situation, Theorem 1 implies
Zi;lpﬂxxil- xi1| converges a.s. 10 zero. An example is provided by the uniform
distribution over s disk in E,. If k = 2, the unbiesed k-points (xl,xa) with
Xy ;4 x2 congist of the family of points x_.L end Xy opposite one another on
a diameter, and at a certain fixed distance from the center of the disk, (There

is one unbiased k-point with x, = X5 both xl and x5 being at the center

1
of the disk in this case,) The k-mears thus converge to some such relative
position, but Theorem 1 Jdoes not gquite permit us to eliminate the interesting
possibility that the two means oscillate slowly but indefinitely around the

center,
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Theorem 1 provides for a.s. convergence of }3;‘:1 p: lx: - ur; | to zero
in a slightly broader class of situations: This is where the unbiased
k-points x = (xl,xa,...xk) with xi;é %y for 1 # J, ere all staeble in the
sense thet for each such x, W(y) > W(x) (and hence V(y) > V(x)) for all
Y in a neighborhood of x. In this case, each such x falls in one of
finitely many equivalence clesses such that W 1is constant on each class.
This is illustrated by the sbove example, where there 1is only a single
equivalence class. If each of the equivalence classes contains only a single
point, Theorem 1 implies a.s. convergence of x® to one of those points.

There are unbiaesed k-points which are not stable. Take a distribution
on E2 which has sharp peaks of probability at each corner of a square, and
is symetric sbout both diagonals. With k=2, the two constituent points can
be symetrically located on a diagonal so that the boundary of the associated
minimum distance partition coincldes with the other diagonal, With some
adjustment, such a k~point can be made to be unbiased, and if the
probability is sufficiently concentrated at the corners of the square, any
small movement of the two points off the diagonal in opposite directions,
results in g decrease in W(x). It seems likely that the k-means cannot

converge to such a configuration.
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